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A model of the undular bore on a viscous fluid 
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(Received 21 June 1965) 

A solution for the weak bore is found in which the mean profile is dominated by 
viscosity, so that the velocity variation is given essentially by a quasi-uniform 
Poiseuille flow. It is found that such a transition between flows of different 
depths is possible provided the Froude number is less than 1.58. The possibility 
of superposing an inviscid perturbation on such a flow is then investigated. 
Under favourable circumstances the effect of this perturbation is to add to the 
profile of the free surface a term which decays exponentially in front of the bore, 
but is oscillatory behind it. 

1. Introduction 
The classical theory of the bore (Lamb 1932) is based on a model consisting of 

two uniform streams connected by a transition through which mass and momen- 
tum are conserved. For a given upstream velocity and given strength this is 
sufficient to determine the velocity of propagation of the bore and, further, 
predict a loss of energy which is assumed to be dissipated in turbulence. 

This model is generally accepted for a bore of substantial strength, but experi- 
ment shows that weak bores have a stationary train of waves behind them and 
exhibit no tendency to break (Favre 1935). Lemoine (1948) suggests that in these 
circumstances energy is lost by radiation through the wave train rather than by 
turbulence. 

A more detailed account is given by Benjamin & Lighthill (1954), who also 
suggest that perhaps the amplitude of the waves is too large for a linear theory 
to be applicable, and proceed to develop a theory based on a cnoidal wave train. 
Their conclusion is that a wave train is possible provided that some energy is 
dissipated by friction at the bore. This need not be the full amount required by 
the classical theory, but if there is no such frictional dissipation only the solitary 
wave with infinite wavelength is possible. 

There is no doubt that some frictional dissipation will occur in practice, but 
the assumption that this takes place at  the bore, through the mechanism of 
turbulence, seems to be worth further investigation. For a weak bore it may be 
sufficient to invoke the effect of laminar friction at the bed. Such a mechanism 
would act systematically over the whole extent of the stream, rather than locally 
in the region of transition. The fact that experiment indicates that the weak bore 
is smooth with no tendency to break lends some support to this possibility. 
Sturtevant (1965), in his discussion of the experiments of Favre (1935), also 
comes to the same conclusion. 
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The problem studied in this paper is developed from this point of view. It is 
convenient to define co-ordinate axes (Ox, Oy)  relative to which the transition is 
steady and the flow at infinity is along the x-axis (figure 1). To obtain a steady 
solution is it is necessary to include a body force in the direction of flow t o  counter- 
act the effect of the viscous stresses. The flow is therefore assumed to take place 
along a slightly inclined bed, so that the gravitational acceleration has com- 
ponents 

We first note that if, relative to the chosen set of axes, the x-component of 
velocity, u, is equal to U at the bed ( y  = 0 )  then a uniform flow is possible with 
constant depth h, where 

u = u-’ (hY-4Y2) (1.1) 
V 

and v is the kinematic viscosity. This is the usual solution for Poiseuille flow 
with the boundary conditions 

u = U  a t  y = O ,  

au/ay = 0 a t  y = h, 

and the y-component of velocity identically zero. Thus if there is to be a transi- 
tion from such a uniform flow with depth h, to another uniform flow with depth 
h, ( > hl), constancy of mass flux requires that 

or h2, + h, h, + hi = ~vU/IJ , .  (1.4) 

This is a necessary condition for the type of transition considered in the 
present problem. It can be regarded as determining the velocity of propagation 
of the transition when the upstream and downstream depths are known. 

For the subsequent analysis it will be useful to define the length parameter 

hl+h, 1 h -72 
ho, where 

h2 ,, - - r(h;+h,h,+hi) 1 
= (3)2+5 (y) . 
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For a weak bore, 8, can be regarded as the mean height. In  terms of h,, condition 

(1.4) is simply vU/g,h2, = 1. (1.6) 

2. The basic equations 
For steady, two-dimensional, incompressible, viscous flow with velocity (u, v ) ,  

pressure p and density p ,  the governing equations are 

au av 
ax ay 
-+- = 0. 

In  terms of the non-dimensional variables 

where a is the maximum slope of the free surface, the above equations become 

where F 2  = u2/g2h,o,  9 = 91/% (2.4) 

and equation ( 1.6) has been used. 
It is possible to simplify equation (2.3) in two ways, both of which are relevant 

in the present problem. If it be assumed that a < 1 and that g = O ( l ) ,  then the 
equations approximate to 

aui 
axf ayf 
-+- = 0. 

It will be assumed that the average profile, dominated by viscosity, is deter- 
minedby (2.5). 

24 Fluid Mech. 24 
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On the other hand, if a, though still fairly small, is large enough to make 
g 4 1, then the appropriate approximate form is 

The last equations will be used to  study the effect of a perturbation of the 
average profile. This perturbation takes place on a scale small enough for it to 
be independent of the influence of viscosity. 

3. The mean profile 
We first look for a transition between two flows at  constant depths h, and h, 

satisfying (1.4), which is consistent with the assumptions made in deriving 
equations (2.5). These equations, written now in dimensional form, are 

au au 1 ap 
ax ay p ax 

@,-+v- =- - - -  

au av 
ax ay 
- + - - 0 .  

The last of these equations implies the existence of a stream function, which is 
written in the form 

where the depth h, is a slowly varying function of x,  and @ is a small correction 
to the quasi-uniform Poiseuille flow. The significant contribution to aY?/ay is 
of the form (1.1) when the expression for hi obtainable from (1.6) is used. 

The second of equations (3.1) gives 

(P-PO)/p  = g2(h?%-Y), (3.3) 

where po is the atmospheric pressure. The first equation then becomes, with the 
help of (3.2) and (3.3), 

v&fvu = 9 2 h k + I y y ~ Z , - ~ . ~ y , ) -  (3.4) 

If the contribution from @ to the right-hand side of (3.4) is omitted, this equa- 
tion becomes 
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The conditions under which (3.4) can be approximated by (3.5) will be discussed 
after the solution is obtained. For the moment it is assumed that +k can be 
calculated from (3.5). Then, together with the boundary conditions 

$ = $ . , = O  at y = O ,  

$.,y = 0 a t  y = h,, 

equation (3.5) can be integrated to give 

$ = (+y3 - +h, y2 - ~ P2 (y4 - 6h: y2) + -3 P2hm (y5 - 10hky2)] .  
V 24h, 120h, 

Finally, from conservation of mass, 

(Y).,=hm = const. 

and hence, by substitution from (3.2) and (3.7), 

hk3(h,-hl) (h,2-hm) (hl+h2+h,) = gF1g2h& 

It follows immediately from (3.9) that h,/ho is a function of g1x/g2ho, which 
shows the slowly varying character of the profile. A solution which varies 
gradually and monotonically from h, a t  x = -co to h2 at x = +co is possible 

(3.10) 
provided that 

for all h, in the range h, < h, < h,, and does not become too small in this range. 
The inequality is satisfied for all h, within the prescribed range if 

P2 < 33 36/25 = 2.494, (3.11) 

h 
h, 4 0  h,3 

1 - p 2 2 i + s p z %  > 0 

except for extremely weak bores where 

h,/h, > (25127)) or (h,-h,)/h, < 0.04. (3.12) 

The required condition on P is then 

(3.13) 

Thus for all practical purposes, the condition on P is 

P2 < 2.5 or P < 1.58. (3.14) 

All these properties of the profile are clearly brought out in the simplified 
solution of (3.9), based on the assumption that (h2-hl)/ho < 1. We may then 

write 3h~~(h,-h,)  (hz-hm) = g i 1 g 2 h & ( l  -2F2/5),  (3.15) 

or (3.16) h, = h, + i (h2 - h,) tanh (pxlh,), 

where (3.17) 

and the slowly varying character of the profile is assured provided that p < 1. 
24-2 
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It is now a simple matter to discuss the validity of (3.5) as an approximation 
to (3.4). From (3.5) @ is of order g2h,3hk/v and the ratio of the terms omitted 
to the terms retained is in order of magnitude g,h,h~/g,h~' or (h2 - h,)/h,. The 
approximation is therefore valid for a weak transition, the same assumption 
used to derive (3.16). 

We note in passing that equation (3.15) also has solutions appropriate to a 
steady bore of negative strength (h2 < hl), the conditions for which are that the 
change in height should not be large and that F2 > 2.5. This is in contrast with 
inviscid theory, where such a bore is necessarily unsteady. It would be interesting 
to see if these solutions can be reproduced experimentally. 

av av 1 ap 
ax ay p a y  

au av 
ax ay i 

u-+n- = -- --g2, 

-+- = 0. 

4. The inviscid contribution to the profile 
We now look for a further contribution to the profile in which the length scale, 

though sufficiently large to ensure that the slope of the free surface remains small, 
is short compared with that which determines the mean profile. Accordingly, 
we use equations (2.6) which, in dimensional form, are 

I au au 1 ap 
ax ay pax'  

u-+v- = --- 

Let the stream function be Y + $, where $ represents a perturbation of the 
mean flow and the dependence of Y on x can now be ignored, at least locally. 
Equations (4.1) become 

(w+$Y)$zl/-$z(w+$YJ = -pz, 

The second of equations (4.2) gives, on integration, 

where the free surface is defined by y = hm + 7. The first equation then gives 

a hm+v 
(W + $J $ZY - $z(W + $d = - 9272 + zj ( (W + $J 45, - $z$zJ dY. (4.4) 

Y 

To solve equation (4.4) we anticipate that the appropriate solution is a wave 
of low frequency for which the x derivatives are in decreasing order of magnitude. 
If the amplitude is also small, a first approximation is then given by 

or $1 = - S 2 T W I  
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where 
(4.7) 

On a linear theory, the next approximation is obtained by the inclusion of the 
remaining linear term on the right-hand side of (4.4). A further improvement, in 
the spirit of cnoidal wave theory, is achieved if terms which make a contribution 
to cj5 of order 72 are also included. The basis of this approximation is described by 
Benjamin (1962), who obtains equations similar to those derived in this section 
but by a different approach. Briefly, in a cnoidal wave of small amplitude a, 
the orders of magnitude are 

'I = O(a),  'Ix = O(a%), VZZ = O ( U 2 )  

and the theory is a second-order approximation in a. 
Most of the conclusions of this investigation will be based on the simpler 

linear theory. This is, of course, more severe than cnoidal-wave theory in its 
restrictions on the amplitude, but probably illustrates the main qualitative 
features of the flow. It will, however, be convenient to have on display the basic 
equation for the more accurate theory. 

Thus the next approximation to 9 is calculated from 

which gives, to the required order of accuracy, 

qbZ = - 92 WITx + gt( W12 + 211 w - 3 J W )  'ITx - 92 WK9,,, (4-9) 

cj5 = - g2 WIT + &st( W'12 + 211 W - 3J W )  r2 - 9 2  WKrlXx, (4.10) 

where (4.11) 

(4.12) 

The equation satisfied by 7 is found from conservation of mass. After some 
manipulation one finds that 

and the boundary condition at the free surface then gives 

The simplified equation, 
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is that used by Benjamin (1962) to  study the solitary wave. The omitted term is 
clearly uniformly small compared with those retained, but the second-order 
term can be comparable with the linear term if (1 - g 2 f )  Jg i2  is comparable with 
the amplitude of 7. If, however, 7 is sufficiently small the linearized equation will 

(4.16) 
suffice. Then 

Since K(h,) is clearly positive, it follows that the perturbation is oscillatory 
if g 2 f >  1 and exponential if g 2 f  < 1. Now on a scale of Iength used for the mean 
profile, I(h,) does in fact vary slowly with x through its dependence on h,, 
and the interesting case, as far as the weak bore is concerned, is that for which 
(1 - g 2 1 )  is positive a t  x = -m and negative a t  x = +a. When this is so the 
equation for 7 takes the form 

TXX+h7 = 0, (4.17) 

where = K-1(4#J WBJ - 9,l) (4.18) 

and is a slowly varying monotonic function of x which increases from a small 
negative value at  x = -m to a small positive value a t  x = +m. There are 
various techniques for dealing with such an equation. A simple method of 

0 = (1 - g J ( ~ r n ) }  7 - 92K(hm) 7 x x .  

solution is as followst. Let 

where a and b are functions of x. Substitution in (4.17) gives 

7 = a m ) ,  (4.19) 

ab~A"+(abxx+2axbx)A'+(axx+ha)A = 0. (4.20) 

If a is chosen so that 
abxx + 2ax b, = 0, 

or a = b-4 I ,  (4.21) 

and A satisfies A" + b A  = 0, (4.22) 

the equation which determines b is 

bbi - 3b-2b2 4 x xx + Ib- 2 x1bx5x = (4.23) 

Since h is a slowly varying function of x, the derivatives of b are in decreasing 
order of magnitude and this equation may be approximated by 

bb: = A. (4.24) 

If h = 0 when x = c, an appropriate solution for b is given by 

(4.25) 

The variable b is then a monotonic increasing function of x which is zero when 
2 = c. 

t A more careful argument is given by Erdelyi (1956). 
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Equation (4.22) for A is the Airey equation (Jeffries 6 Jeffries 1956). The 
appropriate solution, which is everywhere bounded, is such that 

1 

36 2n 
A(0)  = ~ (-Z)! 3 >  

1 
exp { - $( - b)g} (b  + - co) 

A ( b )  - K6)t 

(b  -+ 00). 

(4.26) 

(4.27) 

(4.28) 

T t  follows, from (4.19) and the subsequent relations, that 

(4.30) 

where qo is the value of 7 at A = 0 (x = c). 
The asymptotic behaviour shows clearly the transition to oscillatory flow 

as 2 -+ co, and it remains to discuss in more detail the conditions for which such 
a solution is possible. It is not difficult to  verify that {g21(hm) - 1) is an increasing 
function of h, so that the type of profile discussed above can occur if 

(4.31) 

for some value of h, in the mean flow. To evaluate I@,) it is sufficient to take 

W Y )  = up- hmY/hi + &(Y2/h3), (4.32) 

Thus equation (4.31) is equivalent to a relation between F and the critical 
value of h,/h,. This relation is represented by the lower curve of figure 2. For a 
given value of F the critical value of h,/ho may be regarded as the upper bound 
of hl/ho if the profle ahead of the bore is to decrease exponentially. The corre- 
sponding lower bound of h2/ho is shown in the upper curve of figure 2, which is 
calculated from (1.5). If, for example, F = 1-4, then the transition to oscillatory 
flow will occur when h,/ho = 0.925. This is possible if hl/ho < 0.925 which is 

(4.34) 
equivalent to 

h2/ho > 1-075 or (h2-hl)/ho > 0.150. 

One interesting feature of the results is that the limiting value of P (= 1.60), 
for which a transition to oscillatory flow is nominally possible in an infinitesimally 
weak bore, is extremely close to the limiting value of F (= 1.58) for which a 
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FIGURE 2.  A, Critical value of hm/ho for transition to oscillatory flow; I3, minimum value 
of h,/h,, for transition to  occur. 

monotonically increasing profile for the mean flow is possible (see (3.14)). 
Whether or not this is fortuitous is an open question, but the two conditions 
augment each other to suggest that the change in mean level should not be too 
small if this type of bore is to be possible. 

If Benjamin & Lighthill (1954) are correct in their assertion that the amplitude 
of the oscillations behind the bore is too large to be described by linear theory, 
then the present analysis would have to be considerably refined. Strictly speaking 
the procedure adopted here is not in fact applicable, for on a non-linear theory 
there is a coupling between the viscous mean profile and the inviscid cnoidal 
profile, and the two calculations cannot proceed independently. The qualitative 
features, however, seem clear. The exponential behaviour well ahead of the bore 
will remain, since this can certainly be treated on a linear theory sufficiently far 
from the bore. Behind the bore, the sinusoidal character of the inviscid contribu- 
tion to the profile will give way to a cnoidal wave governed by an equation similar 
to (4.15), but in which the mean profile is not known apriori. The correct approach 
is undoubtedly along the lines of Whitham’s theory of non-linear dispersive waves 
(Whitham 1964), but this must await further investigation. 

One final comment is appropriate on the orders of magnitude involved in a 
typical situation. If in c.g.s. units we take 

h, = op), g2 = 0(103), Y = o(10-2), 
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then equations (1.6), (2.4) and (3.11) combine to give 

91/92 = o(10-3). 

377 

Thus, unless h,, is considerably smaller than 0(1), only a very gentle slope is 
required to achieve this type of bore in a fluid such as water. Experimentally 
it is commonly achieved from a bore, created in a tank with a level bed, which 
has become weak enough to display the undular profile. When viscous dissipation 
is operative this is a time-dependent problem with the fluid far ahead of the bore 
presumably quiescent. For obvious theoretical reasons the conditions in the 
present analysis are chosen so that a steady profile can be studied. From the 
point of view of comparison the unsteadiness will not be too important, if as is 
probably the case, large time intervals are required to produce observable 
changes in the profile. Whether or not the change in the boundary condition 
ahead of the bore produces markedly different results remains to be seen. The 
present analysis does however produce a solution with a profile similar to that 
observed experimenta.lly, and perhaps brings out the mechanism by which this 
is achieved. 
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